45 research outputs found

    Traumatic brain injury in young children with isolated scalp haematoma

    Get PDF
    Objective Despite high-quality paediatric head trauma clinical prediction rules, the management of otherwise asymptomatic young children with scalp haematomas (SH) can be difficult. We determined the risk of intracranial injury when SH is the only predictor variable using definitions from the Pediatric Emergency Care Applied Research Network (PECARN) and Children’s Head Injury Algorithm for the Prediction of Important Clinical Events (CHALICE) head trauma rules.Design Planned secondary analysis of a multicentre prospective observational study.Setting Ten emergency departments in Australia and New Zealand.Patients Children 5 cm haematoma in any region of the head) rule-based definition of isolated SH in both childre

    Accuracy of PECARN, CATCH, and CHALICE head injury decision rules in children: a prospective cohort study

    Get PDF
    © 2017 Elsevier Ltd Background Clinical decision rules can help to determine the need for CT imaging in children with head injuries. We aimed to validate three clinical decision rules (PECARN, CATCH, and CHALICE) in a large sample of children. Methods In this prospective observational study, we included children and adolescents (age

    Incidence of traumatic brain injuries in head‐injured children with seizures

    Get PDF
    Objective: Incidence and short‐term outcomes of clinically important traumatic brain injury (ciTBI) in head‐injured children presenting to ED with post‐traumatic seizure (PTS) is not described in current literature. Methods: Planned secondary analysis of a prospective observational study undertaken in 10 Australasian Paediatric Research in Emergency Department International Collaborative (PREDICT) network EDs between 2011 and 2014 of head‐injured children 24 h (9 [2.7%] AR 2.5 [95% CI 0.8–4.2]) and neurosurgery (8 [2.4%] AR 2.0 [95% CI 0.4–3.7]), were higher than those without PTS. Children with PTS and GCS 15 or 14 had no neurosurgery, intubations or death, with two deaths in children with PTS and GCS ≤13. Conclusions: PTS was uncommon in head‐injured children presenting to the ED but associated with an increased risk of ciTBI in those with reduced GCS on arrival

    Performance of two head injury decision rules evaluated on an external cohort of 18,913 children

    Get PDF
    The Pediatric Emergency Care Applied Research Network (PECARN) decision rule demonstrates high sensitivity for identifying children at low risk for clinically important traumatic brain injury (ciTBI). As with the PECARN rule, the Israeli Decision Algorithm for Identifying TBI in Children (IDITBIC) recommends proceeding directly to computed tomography (CT) in children with Glasgow Coma Score (GCS) lower than 15. The aim was to assess the diagnostic accuracy of two clinical rules that assign children with GCS lower than 15 at presentation directly to CT

    External validation of the Scandinavian guidelines for management of minimal, mild and moderate head injuries in children

    Get PDF
    © 2018 The Author(s). Background: Clinical decision rules (CDRs) aid in the management of children with traumatic brain injury (TBI). Recently, the Scandinavian Neurotrauma Committee (SNC) has published practical, evidence-based guidelines for children with Glasgow Coma Scale (GCS) scores of 9-15. This study aims to validate these guidelines and to compare them with other CDRs. Methods: A large prospective cohort of children (< 18 years) with TBI of all severities, from ten Australian and New Zealand hospitals, was used to assess the SNC guidelines. Firstly, a validation study was performed according to the inclusion and exclusion criteria of the SNC guideline. Secondly, we compared the accuracy of SNC, CATCH, CHALICE and PECARN CDRs in patients with GCS 13-15 only. Diagnostic accuracy was calculated for outcome measures of need for neurosurgery, clinically important TBI (ciTBI) and brain injury on CT. Results: The SNC guideline could be applied to 19,007/20,137 of patients (94.4%) in the validation process. The frequency of ciTBI decreased significantly with stratification by decreasing risk according to the SNC guideline. Sensitivities for the detection of neurosurgery, ciTBI and brain injury on CT were 100.0% (95% CI 89.1-100.0; 32/32), 97.8% (94.5-99.4; 179/183) and 95% (95% CI 91.6-97.2; 262/276), respectively, with a CT/admission rate of 42% (mandatory CT rate of 5%, 18% CT or admission and 19% only admission). Four patients with ciTBI were missed; none needed specific intervention. In the homogenous comparison cohort of 18,913 children, the SNC guideline performed similar to the PECARN CDR, when compared with the other CDRs. Conclusion: The SNC guideline showed a high accuracy in a large external validation cohort and compares well with published CDRs for the management of paediatric TBI

    A prospective observational study to assess the diagnostic accuracy of clinical decision rules for children presenting to emergency departments after head injuries (protocol): The Australasian Paediatric Head Injury Rules Study (APHIRST)

    Get PDF
    Background: Head injuries in children are responsible for a large number of emergency department visits. Failure to identify a clinically significant intracranial injury in a timely fashion may result in long term neurodisability and death. Whilst cranial computed tomography (CT) provides rapid and definitive identification of intracranial injuries, it is resource intensive and associated with radiation induced cancer. Evidence based head injury clinical decision rules have been derived to aid physicians in identifying patients at risk of having a clinically significant intracranial injury. Three rules have been identified as being of high quality and accuracy: the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) from Canada, the Children's Head Injury Algorithm for the Prediction of Important Clinical Events (CHALICE) from the UK, and the prediction rule for the identification of children at very low risk of clinically important traumatic brain injury developed by the Pediatric Emergency Care Applied Research Network (PECARN) from the USA. This study aims to prospectively validate and compare the performance accuracy of these three clinical decision rules when applied outside the derivation setting.Methods/design: This study is a prospective observational study of children aged 0 to less than 18 years presenting to 10 emergency departments within the Paediatric Research in Emergency Departments International Collaborative (PREDICT) research network in Australia and New Zealand after head injuries of any severity. Predictor variables identified in CATCH, CHALICE and PECARN clinical decision rules will be collected. Patients will be managed as per the treating clinicians at the participating hospitals. All patients not undergoing cranial CT will receive a follow up call 14 to 90 days after the injury. Outcome data collected will include results of cranial CTs (if performed) and details of admission, intubation, neurosurgery and death. The performance accuracy of each of the rules will be assessed using rule specific outcomes and inclusion and exclusion criteria.Discussion: This study will allow the simultaneous comparative application and validation of three major paediatric head injury clinical decision rules outside their derivation setting.Trial registration: The study is registered with the Australian New Zealand Clinical Trials Registry (ANZCTR)- ACTRN12614000463673 (registered 2 May 2014). © 2014 Babl et al.; licensee BioMed Central Ltd

    A multicentre randomised controlled trial of levetiracetam versus phenytoin for convulsive status epilepticus in children (protocol): Convulsive Status Epilepticus Paediatric Trial (ConSEPT) - a PREDICT study

    Get PDF
    Background: Convulsive status epilepticus (CSE) is the most common life-threatening childhood neurological emergency. Despite this, there is a lack of high quality evidence supporting medication use after first line benzodiazepines, with current treatment protocols based solely on non-experimental evidence and expert opinion. The current standard of care, phenytoin, is only 60% effective, and associated with considerable adverse effects. A newer anti-convulsant, levetiracetam, can be given faster, is potentially more efficacious, with a more tolerable side effect profile. The primary aim of the study presented in this protocol is to determine whether intravenous (IV) levetiracetam or IV phenytoin is the better second line treatment for the emergency management of CSE in children. Methods/Design: 200 children aged between 3 months and 16 years presenting to 13 emergency departments in Australia and New Zealand with CSE, that has failed to stop with first line benzodiazepines, will be enrolled into this multicentre open randomised controlled trial. Participants will be randomised to 40 mg/kg IV levetiracetam infusion over 5 min or 20 mg/kg IV phenytoin infusion over 20 min. The primary outcome for the study is clinical cessation of seizure activity five minutes following the completion of the infusion of the study medication. Blinded confirmation of the primary outcome will occur with the primary outcome assessment being video recorded and assessed by a primary outcome assessment team blinded to treatment allocation. Secondary outcomes include: Clinical cessation of seizure activity at two hours; Time to clinical seizure cessation; Need for rapid sequence induction; Intensive care unit (ICU) admission; Serious adverse events; Length of Hospital/ICU stay; Health care costs; Seizure status/death at one-month post discharge. Discussion: This paper presents the background, rationale, and design for a randomised controlled trial comparing levetiracetam to phenytoin in children presenting with CSE in whom benzodiazepines have failed. This study will provide the first high quality evidence for management of paediatric CSE post first-line benzodiazepines.Stuart R. Dalziel, Jeremy Furyk, Megan Bonisch, Ed Oakley, Meredith Borland … Kochar Amit … et al

    Treatment patterns and frequency of key outcomes in acute severe asthma in children: a Paediatric Research in Emergency Departments International Collaborative (PREDICT) multicentre cohort study

    Get PDF
    Rationale Severe acute paediatric asthma may require treatment escalation beyond systemic corticosteroids, inhaled bronchodilators and low-flow oxygen. Current large asthma datasets report parenteral therapy only. Objectives To identify the use and type of escalation of treatment in children presenting to hospital with acute severe asthma. Methods Retrospective cohort study of children with an emergency department diagnosis of asthma or wheeze at 18 Australian and New Zealand hospitals. The main outcomes were use and type of escalation treatment (defined as any of intensive care unit admission, nebulised magnesium, respiratory support or parenteral bronchodilator treatment) and hospital length of stay (LOS). Measurements and main results Of 14 029 children (median age 3 (IQR 1–3) years; 62.9% male), 1020 (7.3%, 95% CI 6.9% to 7.7%) had treatment escalation. Children with treatment escalation had a longer LOS (44.2 hours, IQR 27.3–63.2 hours) than children without escalation 6.7 hours, IQR 3.5–16.3 hours; p<0.001). The most common treatment escalations were respiratory support alone (400; 2.9%, 95% CI 2.6% to 3.1%), parenteral bronchodilator treatment alone (380; 2.7%, 95% CI 2.5% to 3.0%) and both respiratory support and parenteral bronchodilator treatment (209; 1.5%, 95% CI 1.3% to 1.7%). Respiratory support was predominantly nasal high-flow therapy (99.0%). The most common intravenous medication regimens were: magnesium alone (50.4%), magnesium and aminophylline (24.6%) and magnesium and salbutamol (10.0%). Conclusions Overall, 7.3% children with acute severe asthma received some form of escalated treatment, with 4.2% receiving parenteral bronchodilators and 4.3% respiratory support. There is wide variation treatment escalation

    Comparative evaluation of microscopy, OptiMAL® and 18S rRNA gene based multiplex PCR for detection of Plasmodium falciparum & Plasmodium vivax from field isolates of Bikaner, India

    Get PDF
    AbstractObjectiveTo evaluate microscopy, OptiMAL® and multiplex PCR for the identification of Plasmodium falciparumm (P. falciparum) and Plasmodium vivax (P. vivax) from the field isolates of Bikaner, Rajasthan (Northwest India).MethodsIn this study, a multiplex PCR (P. falciparum and P. vivax) was further developed with the incorporation of Plasmodium malariae (P. malariae) specific primer and also a positive control. The performance of microscopy, plasmodium lactate dehydrogenase (pLDH) based malaria rapid diagnostic test OptiMAL® and 18S rRNA gene based multiplex PCR for the diagnosis of P. falciparum and P. vivax was compared.ResultsThe three species multiplex PCR (P. falciparum, P. vivax and P. malariae) with an inbuilt positive control was developed and evaluated. In comparison with multiplex PCR, which showed the sensitivity and specificity of 99.36% (95% CI, 98.11%–100.00%) and 100.00% (95% CI, 100.00%–100.00%), the sensitivity and specificity of microscopy was 90.44% (95% CI, 88.84%–95.04%) and 99.22% (95% CI, 97.71%–100.00%), and OptiMAL® was 93.58% (95% CI, 89.75%–97.42%) and 97.69% (95% CI, 95.10%–100.00%). The efficiencies were 99.65%, 95.10% and 95.45% for multiplex PCR, microscopy and OptiMAL®, respectively.ConclusionsOur results raise concerns over the overall sensitivities of microscopy and OptiMAL®, when compared to the multiplex PCR and thus stress the need for new molecular interventions in the accurate detection of the malarial parasites. This further highlights the fact that further developments are needed to improve the performance of rapid diagnostic tests at field level
    corecore